Regional Scale Ground-Water Vulnerability Assessments in the Mid-Atlantic Region Based on Statistical Probability Models

A Multi-Scale and Multi-Threshold Approach

Investigators and Cooperators

- Earl Greene, Hydrologist, USGS, Baltimore, MD
- Andrew LaMotte, Geographer, USGS, Baltimore, MD
- Nagaraj Neerchal, Professor Statistics, UMBC
- Kerry Ann-Kelly, Statistician, UMBC
- Minglei Lui, Statistician, UMBC
- Betsy Smith, EPA, ORD, ReVA

Presentation Outline

- Background and Research Objectives
- Model Development
- Some Results at Multiple -Scales and Multiple-Management Thresholds

Research Overview

ReVA Goal

... to develop and demonstrate an approach to comprehensive, regional-scale assessment that effectively informs decision-makers as to the magnitude, extent, distribution, and uncertainty of current and anticipated environmental risks.

USGS Goal

... to characterize the statistical relation between groundwater quality and geographic factors to generate shallow ground-water vulnerability maps at multiple-scales and at multiple management thresholds.

Spatial Statistics

- Subset of Statistics
- Area of Statistics Concerned with Making Inferences on Areas Between Data Collected at Various Points in Space
- Dependency of Point Data on Geographic Factors and can be Spatially Modeled

Defining The Problem

Values:

$$(1,5) = 100$$

$$(3,4) = 105$$

$$(1,3) = 105$$

$$(4,5) = 100$$

$$(5,1) = 115$$

Output Maps

- Probabilty Maps
- Standard Error Maps
- Confidence Interval Maps
- Quantile Maps
- Prediction Maps based on a Variable (Land-Use) Change

Presentation Outline

- Background and Research Objectives
- Model Development
- Some Results at Multiple -Scales and Multiple-Management Thresholds

The Regional Model

- Uses only a Selected Database and Regional Spatial Statistical Method
- Nitrates are used as a Surrogate for Ground-Water Vulnerability
- Regional Ground-Water Vulnerability Maps
- Regional Error Maps

Statistically Grouped Land Use/Cover

Spatial Dependency of Well Nitrate Concentration on Land Use

Radius is Maximized at 1500 m

Generalized geology of the Mid-Atlantic region

Explored Variables in the Regional Model

- Land Use/Cover
- Geology Type
- Nitrate Input Function: Manure, Fertilizer, Atmospheric Deposition
- Soil Data: Hydrologic group, Organic Matter, Depth to Bedrock, Depth to Water Table, and Percent Silt and Clay
- Population Density

Understand Thresholds

Jay Ver Hoef, 2002

Statistical Model Development

- Logistic-Regression method to predict the presence of nitrate concentrations above a specified management threshold value.
- Equations are developed using explanatory variables (land use, geology, soils, and other geographic datasets).
- Resulting equations are transformed to predict the probability of exceeding a specified management thresholds.

Presentation Outline

- Background and Research Objectives
- Model Development
- Some Results at Multiple -Scales and Multiple-Management Thresholds

Regional Ground Water Vulnerability – Detail (1500m x 1500m) Scale

Regional Ground Water Vulnerability – Detail (1500m x 1500m) Scale

Predictive Power of Model Using the Press Statistic

Percentage of Correct Predictions in Press Statistic Test

Ground Water Vulnerability –Watershed Scale

Summary and Benefits to Resource Managers

- Improve our Knowledge of Ground-Water Quality and Vulnerability
- Develop Grid Scale (Detail Scale) Model
- Develop Watershed or County Based Specific Models
- Many Applications
 - Future Scenarios
 - Human Health
 - Monitoring Locations
 - Management